
Parallelizing MST Algorithms: Project Proposal

Alex Knox (akknox), Elizabeth Knox (emknox)

March 27, 2025

1 Summary

In this project, we will explore the parallelization of three algorithms for finding the minimum spanning tree
of a graph: Prim’s algorithm, Kruskal’s algorithm, and Boruvka’s Algorithm. We will implement them using
different parallelization strategies, comparing the speedup obtained in a shared address space model or a
message passing model.

2 Webpage

https://akknox.github.io/mstparallelization.github.io/

3 Background

Minimum spanning trees are useful in many applications, such as network design, clustering, and efficiently
approximating the traveling salesman problem. Many of these real-world applications involve handling large
datasets. Thus, we are interested in scaling the performance of minimum spanning tree algorithms through
parallelization.

Minimum Spanning Tree (MST). The formal definition of a minimum spanning tree is as follows.
Consider a connected, undirected graph G = (V,E) where each edge ei is assigned a positive weight wi. A
minimum spanning tree is a connected subgraph G′ = (V ′, E′) of G with V ′ = V and E′ ⊆ E such that∑

ei∈E′ wi is minimized over all such subgraphs. In other words, it is a tree subgraph of G with minimum
total edge weight.

There are several algorithms for finding an MST, which each rely on different properties of an MST.

Prim’s Algorithm. The basis for Prim’s algorithm is a property of MSTs called the Light Edge Property:
if we take any subset of vertices X, the edge with least weight spanning X and V \X must be in the MST.
The algorithm iteratively constructs a visited set by selecting the lightest edge spanning the current visited
set and the rest of the graph for inclusion in the MST, and adding the unvisited endpoint of this edge to the
visited set. Once every vertex is in the visited set, the MST is complete. The pseudocode for this algorithm
is replicated below.

Algorithm 1 Prim’s Algorithm

1: X = { s } // s is arbitrary
2: T = { }
3: while X != V do:
4: Find minimum weight edge (a, b) with a ∈ X and b ∈ V \X
5: X = X ∪ {b}
6: T = T ∪ {(a, b)}
7: end while
8: return T

1



There are opportunities for parallelism in computing the minimum weight of all edges under consideration
at each iteration (line 4), since these reads are independent. This can be helpful, especially in dense graphs,
where each vertex has many neighbors. However, the outer loop is inherently sequential, since the choice of
lightest edge on one iteration can change the lightest edge candidates for the next iteration.

Kruskal’s Algorithm. This algorithm uses a greedy approach to select edges belonging to the MST. On
every iteration, the algorithm chooses the lightest edge that has not already been selected and does not
create a cycle with edges already chosen. This is based on the cycle property of an MST: for every cycle in
the graph, the heaviest edge is excluded from the MST. By selecting edges in weight order, the algorithm
ensures that all other edges in a cycle are always considered for inclusion before the heaviest edge in the
cycle. Instead of building up a single connected component until it forms an MST, this algorithm builds up
multiple connected components. Eventually, when the algorithm terminates, there will only be one connected
component left, and it will be an MST.

Algorithm 2 Kruskal’s Algorithm

1: T = { }
2: for (a,b) from lightest to heaviest do:
3: if a and b are not in the same connected component then T = T ∪ {(a, b)}
4: end if
5: end for
6: return T

Like Prim’s, the outer loop of Kruskal’s algorithm is difficult to parallelize because the addition of an
edge during some iteration will affect whether later edges will be included in the same connected component
or not, and because edges must be checked in weight priority order for the algorithm to produce correct
results. However, there are ways to parallelize some of the auxiliary steps like the sorting of edges, and
modifications to the algorithm which allow for more parallelism.

Boruvka’s Algorithm. This algorithm uses the same light edge property as the previous two algorithms,
with the additional observation that multiple cuts can be examined at the same time. For example, if we
take every vertex Vi as an individual cut, the lightest edge connected to that vertex (called a vertex bridge)
must be in the MST because it is the lightest edge spanning Vi and V \Vi. Then, the components connected
during that process can be contracted, so that each connected component is treated as a single vertex,
and the process repeats. The contraction step can be implemented a variety of ways: most notably, tree
contraction and star contraction.

Algorithm 3 Boruvka’s Algorithm

1: T = {}
2: G = V
3: while G has more than one vertex do
4: for each vertex v in G do
5: find the lightest edge (v, b)
6: T = T ∪ {(v, b)}
7: Contract G on the edge (v, b)
8: end for
9: end while

Kruskal’s algorithm has more room for parallelism, since every vertex can find its lightest incidental edge
at the same time. It is also possible to combine some of the ideas used in Boruvka’s algorithm to adapt
Prim’s algorithm or Kruskal’s algorithm, and make them better suited for parallelism.

2



4 The Challenge

Prim’s algorithm and Kruskal’s algorithm exhibit some inherently sequential behavior because updates to the
MST T are made on every iteration of the outer loop and later updates depend on what vertices are already
connected. Parallelism in the outer loops of these algorithms is not obvious and would require algorithmic
modifications based on understanding underlying data dependencies. The parallelism opportunities in Boru-
vka’s algorithm are more obvious, but as described below the computation cost is slightly higher. We aim
to analyze tradeoffs between the computational differences in MST-finding algorithms and opportunities for
parallelism and synchronization costs in the data structures we use to implement them. We would also aim
to learn how to use properties of the input data (properties like edge density and degree of connectedness)
to identify parallelism opportunities and adapt or combine approaches accordingly.

Dependencies in the MST workload for these algorithms come from updates to the MST T , because across
all of the MST-finding algorithms, the computation involves computing a minimum and then checking if
adding a particular edge is necessary to connect a new vertex to the overall tree. If other updates were made
by other threads, the update may connect two vertices already in the tree. In a general graph, this forces
sequential updates. Thus, updates would require synchronization to ensure they are done correctly. The cost
of synchronization (and similarly, the cost of communication between threads) depends on implementation
details of how we track updates. Prim’s algorithm is often implemented with a priority queue and Kruskal’s
algorithm is often implemented with a union-find data structure; the former is more costly to synchronize.

There is additional opportunity for parallelism over two sides of a critical edge if we can identify an edge
whose removal would disconnect the graph. This involves algorithmic changes to identify sets of vertices
that are connected to the rest of the graph only by edges like these.

Overall, the memory accesses involved in these two algorithms primarily surround checking whether
endpoints a and b of particular edges are connected (either with respect to T in Kruskal’s or with respect
to a cut X in Prim’s). There is some locality, because we often want to access all neighbors of a particular
vertex and an adjacency matrix (or sorted adjacency list) lends itself to this access pattern. However, there
is also random access based on what is in T and X or not.

Compared to the communication cost of Prim’s and Kruskal’s algorithm, Boruvka’s algorithm seems to
have less overhead in parallelization. Boruvka’s algorithm updates T from the perspective of each connected
component (starting from each vertex being disconnected), rather than from the perspective of the graph
as a whole, which means there will be less need for communication between two threads trying to make
updates. The challenge with Boruvka’s algorithm, as compared to Kruskal’s is that more computation is
repeated. Kruskal’s algorithm sorts edges by weight first and iterates through them, so finding a minimum
weight edge satisfying certain properties requires less additional computation. Boruvka’s algorithm does not
do this, so although communication requirements decrease, computation per thread increases.

5 Resources

We will be using GHC machines to run both shared address space and message passing implementations.
We will also benefit from PSC machine access for testing the scalability of our approaches.

For testing purposes, we will want to a variety of benchmarks: some which are particularly dense, since
that increases the computational cost of finding an MST, and some that are similar to real world applications,
which we will need to find.

We will also look at some research into parallelizing these algorithms, including attempts to parallelize
Prim’s and Kruskal’s. For example, this paper1 describes a method of parallelizing Kruskal’s algorithm
directly, while this paper2 provides a variant of Kruskal’s better suited for parallelism. In addition, this
paper3 provides a method of augmenting Prim’s algorithm with ideas from Boruvka’s algorithm to produce
a more parallelizable solution.

1https://ieeexplore.ieee.org/document/6270833
2https://dl.acm.org/doi/abs/10.5555/2791220.2791225
3https://wiki.eecs.yorku.ca/course archive/2010-11/W/6490A/ media/public:xiwen.pdf

3



6 Goals and Deliverables

The goals we plan to achieve are:

• Implement a sequential version of Prim’s algorithm or Kruskal’s algorithm to compare speedup (because
sequential versions of these algorithms will have less data-structure overhead than a sequential version
of Boruvka’s algorithm)

• Parallelize Boruvka’s algorithm in the shared address space model: because there is not much commu-
nication, we would aim to achieve near-linear speedup. We would test this on benchmarks that cover
a variety of different features of graphs, increasing the number of vertices in the graph and changing
the relative density of edges.

• Parallelize Boruvka’s algorithm in the message passing model: again, because of the limited commu-
nication requirements we would hope to achieve near-linear speedup. Then we would compare the
performance of the two different parallel models.

• Parallelize Kruskal’s algorithm and Prim’s algorithm as best we can given their sequential nature. For
Kruskal’s this would involve creating helper threads to check for cycle-creating edges while the main
thread does the sequential computation, and for Prim’s algorithm, this would involve parallelizing the
inner loop that finds the minimum weight edge. We would aim to compare the speedup of all three
algorithms as we change different properties of our input graphs.

If this goes well, we hope to implement some more complicated algorithmic changes which would improve
the opportunities for parallelism. The exact algorithmic changes we do at this point would depend on what
types of graphs do not scale up as well, i.e. whether our current implementations scale worse for increasing
number of vertices or increasing number of edges. Some potential algorithmic change, inspired by the papers
we reference in section 5, include:

• One example is a modification of Kruskal’s algorithm which has more potential for parallelism. It
filters out certain edges that are not in the MST in order to decrease the computation cost, and could
help improve speedup for not-too-sparse graphs.

• Another algorithm, derived from Prim’s, creates multiple threads each responsible for growing an MST
for a subset of edges or vertices, and then uses parts of Boruvka’s algorithm to combine them. This
would use the shared address space model.

7 Platform Choice

For the most part, we plan to use OpenMP to implement shared address space parallelism. For some
algorithms, we also want to try out message passing models using MPI, particularly for Boruvka’s, which
would have relatively low communication cost. The details of which platform we would use for each algorithm
are addressed in more detail in section 6.

8 Proposed Schedule

• Week 1: Implement sequential version of all three algorithms, and write benchmark test cases for
varying sizes of graphs and their density. For varying numbers n of vertices, we want a full test suite
for graphs with O(n) vertices and graphs with O(n2) vertices.

• Week 2: Get working parallel implementations of Prim’s, Kruskal’s, and Boruvka’s algorithm using the
shared address space model, and begin benchmark testing on multiple processors. The implementation
goals are described in more detail in the previous section. This is approximately where the milestone
report falls.

4



• Week 3: Work on improving the implementations of the above to get better speedup. Also, experiment
with message passing implementations as described in the goals section. Also, if time allows, we might
expand the benchmark tests to include “real-world” datasets, of graphs representing some application.

• Week 4: Improve the message passing implementation and compare the best achieved results between
this and the shared address space models. If time allows, we will work on algorithmic modifications
here in an attempt to meet some of the “hope” goals.

5


